OPTIMIZATION OF WELDING PARAMETERS FOR DISSIMILAR MATERIALS WEAR PLATE HB500 AND AISI 318LN USING TAGUCHI METHOD

Authors

  • Marga Yogatama Departemen Teknik Mesin Institut Teknologi Sepuluh Nopember
  • Arif Wahjudi Departemen Teknik Mesin Institut Teknologi Sepuluh Nopember

DOI:

https://doi.org/10.63786/jipower.v1i03.56

Keywords:

Welding, dissimilar metals, Wearplate HB500, AISI 318LN, Taguchi method, tensile strength, impact toughness, PWHT

Abstract

Welding dissimilar materials such as wear plate HB500 and duplex stainless steel AISI 318LN presents significant challenges due to the formation of brittle intermetallic phases, differences in thermal expansion, and residual stresses. This research aims to determine the optimal combination of welding parameters preheat temperature, electrode type, welding current, PWHT temperature, and PWHT holding time using the Taguchi L18 orthogonal array. Mechanical responses evaluated include tensile strength and impact toughness, which were combined using the Multi-Response Performance Index (MRPI). Experimental results indicate that PWHT temperature contributes most significantly to the combined mechanical response (44%), followed by electrode type (14%) and preheat temperature (12%). Welding current and PWHT time were statistically insignificant (p > 0.05). The optimal parameter combination determined through Taguchi analysis is electrode E2209, preheat 150°C, and PWHT 400°C. Confirmation tests produced an MRPI value of 0.833, which lies within the 95% confidence interval of predicted values (0.575–0.942). Thus, the Taguchi method demonstrated reliable predictive capability for optimizing welding parameters for dissimilar HB500–AISI 318LN joints.

Downloads

Download data is not yet available.

References

Ashby, M. F., & Jones, D. R. H. (2012). Engineering materials 1: An introduction to properties, applications, and design (4th ed.). Elsevier.

ASTM International. (2016). ASTM E23-16b: Standard test methods for notched bar impact testing of metallic materials. ASTM International.

ASTM International. (2022). ASTM E8/E8M-22: Standard test methods for tension testing of metallic materials. ASTM International.

Callister, W. D., & Rethwisch, D. G. (2013). Materials science and engineering: An introduction (9th ed.). Wiley.

Fernandez, M., Rodriguez, T., & Lopez, D. (2020). Effect of preheating on structural transformation and hydrogen cracking in high-strength steel welds. Journal of Materials Processing Technology, 285, 116808.

https://doi.org/10.1016/j.jmatprotec.2020.116808

Hoang, V. H., Nguyen, P. T., & Lee, S. (2024). Material strength optimization of dissimilar MIG welding between carbon and stainless steels. Materials & Design, 235, 112441.

https://doi.org/10.1016/j.matdes.2023.112441

Johansson, L., Sandström, R., & Karlsson, L. (2020). Wear behavior and service performance of high-hardness abrasion-resistant steels. Wear, 450–451, 203255.

https://doi.org/10.1016/j.wear.2020.203255

Kumar, R., & Balasubramanian, V. (2019). Optimization of SMAW parameters using MRPI and response surface methodology. Materials Research Express, 6(10), 106521.

https://doi.org/10.1088/2053-1591/ab3bb4

Kumar, S., & Singh, J. (2021). Influence of filler metal compatibility on microstructure and mechanical performance of dissimilar steel weldments. Materials Today: Proceedings, 46, 5634–5641.

https://doi.org/10.1016/j.matpr.2021.02.336

Liang, X., Chen, Y., & Zhou, Q. (2023). Microstructural degradation in the HAZ of dissimilar steel welds under varying heat input conditions. Metals, 13(4), 721.

https://doi.org/10.3390/met13040721

Mishra, A., & Patel, H. (2021). Role of nitrogen in enhancing mechanical and corrosion properties of duplex stainless steels. Materials Chemistry and Physics, 267, 124690.

https://doi.org/10.1016/j.matchemphys.2021.124690

Rahman, M., & Kim, D. (2020). Formation of intermetallic phases in dissimilar stainless steel welds and their effect on toughness. Journal of Manufacturing Processes, 56, 324–332.

https://doi.org/10.1016/j.jmapro.2020.04.035

Sahoo, G., Jena, S., & Mahapatra, R. (2019). Evaluation of residual stresses and cracking susceptibility in dissimilar metal weld joints. Engineering Failure Analysis, 104, 735–747.

https://doi.org/10.1016/j.engfailanal.2019.06.020

Seo, W.-G., Suh, J.-Y., Shim, J.-H., Lee, H., Yoo, K., & Choi, S.-H. (2020). Effect of post-weld heat treatment on microstructure and hardness of P92 steel in IN740H/P92 dissimilar weld joints. Materials, 13(3), 634.

https://doi.org/10.3390/ma13030634

Sharma, V., & Singh, J. (2021). Multi-response optimization of welding parameters using Taguchi and grey relational analysis. Journal of Materials Engineering and Performance, 30, 1120–1132.

https://doi.org/10.1007/s11665-020-05216-8

Zhang, H., Li, M., & Xu, W. (2022). Thermal mismatch and metallurgical challenges in dissimilar metal welding of abrasion-resistant and stainless steels. Journal of Materials Research and Technology, 19, 2510–2523.

https://doi.org/10.1016/j.jmrt.2022.07.033

Downloads

Published

2025-12-11

How to Cite

Marga Yogatama, & Arif Wahjudi. (2025). OPTIMIZATION OF WELDING PARAMETERS FOR DISSIMILAR MATERIALS WEAR PLATE HB500 AND AISI 318LN USING TAGUCHI METHOD. JIPOWER : Journal of Intellectual Power, 2(03), 1–13. https://doi.org/10.63786/jipower.v1i03.56

Similar Articles

1 2 > >> 

You may also start an advanced similarity search for this article.